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Abstract: 
 
The influence of lattice parameters on the magnetic properties of the binary Nickel/Bismuth (Ni/Bi) 

alloy is investigated within the effective field theory. The temperature and applied field dependence of 

the magnetization of the Ni/Bi and its components (Ni, Bi1 and Bi2) are obtained. We find that the 

Tc=2.31 for the small lattice parameter (ha/2, hc/2 and ra/2), Tc=1.14 for the original lattice parameter 

(ha, hc and ra) and Tc=0.59 for the high lattice parameter (2ha, 2hc and 2ra); hence, the critical 

temperature is inversely proportional with the lattice parameter. Similarly, hysteresis loop areas of the 

Ni/Bi alloy are also inversely proportional with the lattice parameters. 
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1. Introduction 

 

Nickel (Ni) based alloys are advanced structural materials that are mainly used in aircraft engines 

but are also applied in the chemical, petrochemical and electrical industries [1, 2]. Binary Nickel-

Bismuth (Ni/Bi) alloy is one of the Ni-based alloys which is used in ductility and grain-boundary 

(GB) segregation [3], intermetallic layers [4], hot dip galvanizing for steels to protect from 

atmospheric corrosions electrical contacts and magnetic layers [5], intermediate temperature 

embrittlement (ITE) [6], lead-free solders [7], lead –free solders [8] and superconductivity [9], etc. 

Because of these wide applications of the Ni/Bi alloys, these alloys have been already one of the 

actively studied subjects. For example, early experimental studies of Ni/Bi phase diagram were 

done by Portevin [10], Voss [11] and the detailed phase diagram of the Bi-Ni alloy was given by 

Nash [12].   Ely et al. [13] reported the first synthesis and characterization of Ni-Bi nanoparticles 

and nanowires via a very mild wet-chemical procedure. Yoshida et al. [14] studied the temperature 

dependent of magnetization as well as the SEM images and X-ray diffraction patterns. Piñeiro et 

al. [15] synthesized NiBi3 polycrystals via a solid state method and also performed X-ray 

diffraction analysis. X-Ray, DSC and magnetic susceptibility measurements were performed with 

NiBi specimens in the interval from room temperature to 700 K by Vassilev and Lilova [16]. On 

the other hand, Jang et al. [17] studied the thermodynamic modelling of the Bi-Ni binary system 

was performed through the Thermo-calc® software package by using the CALPHAD method. 
Recently, ferromagnetic and paramagnetic properties of the binary Nickel/Bismuth alloy were 

studied within the effective field theory (EFT) by Keskin and Şarlı [18]. In particular, they studied 

the temperature dependence of Ni/Bi alloy and its components (Ni, Bi1 and Bi2). They have also 

studied the hysteresis loop behavior of Ni/Bi alloy and its components (Ni, Bi1 and Bi2) in detail.   

 

In this paper, we investigate the lattice parameters effects on the magnetic properties of the Ni/Bi 

and its components within the EFT [19]. We obtain the temperature and applied field dependence 

of the magnetization of the Ni/Bi, namely hysteresis loops behavior, for the small lattice parameter, 
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and for the high lattice parameter than the original lattice parameter (ha, hc and ra) of the Ni/Bi. 

We also present the behavior of coercivity fields of the alloy. We should also mention that since 

the lattice size varies with the temperature of the environment, the investigation of the effects of 

lattice parameters on the magnetic properties is very important for both technological applications 

and academic research. It is also worth whiling mention that the EFT has been used to study 

magnetic properties of many physical systems such as cylindrical core and shell Ising nanowire 

[20], thin films [21], the equilibrium [22] and nonequilibrium [23, 24] phase transitions in Ising 

systems,  Ising nanotube [25], Ising nanoparticles consisting of core and shell [26-28] and carbon 

diamond nanolattice [29], etc.  

 

The organization of the rest of the paper is as follows. In section 2, the model and its formulation 

are given within the EFT.  The numerical results and discussions are presented in Section 3 and 

Section 3 briefly contains the conclusion. 

 

2. The model and formulation 

 

In our very recent previous work [18], we investigated the ferromagnetic and paramagnetic 

properties of the binary Ni/Bi using the effective field theory (EFT). In this paper, we will 

investigate the influence of lattice parameters on the magnetic properties of the Ni/Bi and we will 

follow the same calculation procedures as in Ref. 18. But the main differences; we will change the 

original lattice parameters (ha, hc and ra) as small lattice parameters (ha/2, hc/2 and ra/2) and high 

lattice parameters (2ha, 2hc and 2ra). 

 

We depict the Ni/Bi alloy with the rhombohedral Bi lattice (ra=4.7236 Å and α=57.350) is 

surrounded by the hexagonal Ni lattice (ha=4.5330 Å and hc=11.7970 Å) [30, 31] as shown in 

Fig.1 [18].  

 
 

Figure 1. (Color online) Schematic depiction of the binary Nickel/Bismuth alloy (Ni/Bi) [18]. 
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We assume that Ni and Bi components of the Ni/Bi alloy are Ising spin-1/2 particles for the 

calculations of the magnetic properties. According to lattice locations and nearest-neighbors, the 

Ni/Bi alloy has three different magnetizations that are Ni, Bi1 and Bi2.One notes that Bismuth 

atoms have two different magnetizations because of their lattice locations and their nearest-

neighbors are different. The Hamiltonian of the Ni/Bi alloy can be written as, 

 

Ni Ni Bi1 Bi2 Bi2 Bi2 Bi2 Bi2

Ni Ni Bi1 Bi1 Ni Bi1 Ni Bi2

Ni Bi1 Bi2

z z z z z z z z

ha r1 r2 r3

NiNi Bi1Bi2 Bi2Bi2 Bi2Bi2

z z z z z z z z

layers layers int1 int2

NiNi Bi1Bi1 NiBi1 NiBi2

z z z
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J S S J S S J S S J S S
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


   
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H
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
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 

 

 

where, Sz=±1 is the Pauli spin operator. h is the external magnetic field. Js are the exchange 

interaction between two nearest-neighbor atoms on the lattice of theNi/Bi alloy, explained below 

and seen in Fig. 1. Moreover, they are designated as J=k/nd [32, 33], k is a constant that defines 

the kind of magnetism (if k=1>0, the Ni/Bi alloy is ferromagnetic and if k=-1<0, the Ni/Bi alloy is 

antiferromagnetic), nd is the normalized lattice constant (nd=d/1 Å) [33], d is the distance between 

two nearest-neighbor atoms which is obtained by the real lattice constant of the Ni/Bi alloy.The 

real lattice constants, normalized lattice constants and exchange interactions of the Ni/Bi alloy are 

given by, 

 

Original hexagonal lattice constants; 

ha=4.5330 Å, hc=11.7970 Å. 

Small hexagonal lattice constants; 

ha/2=2.2665 Å, hc=5.8985 Å. 

High hexagonal lattice constants; 

2ha=9.066 Å, hc=23.594 Å. 

 

Original normalized hexagonal lattice constants; 

nha=ha/1 Å =4.5330, nhc=hc/1 Å =11.7970. 

Small normalized hexagonal lattice constants; 

nha=ha/2 Å =2.2665, nhc=hc/2 Å =5.8985. 

High normalized hexagonal lattice constants; 

nha=2ha/1 Å =9.066, nhc=2hc/1 Å =23.594. 

 

Original rhombohedral lattice constants; 

ra=4.7236 Å and α=57.350. 

Small rhombohedral lattice constants; 

ra/2=2.3618 Å and α=57.350. 

High rhombohedral lattice constants; 

2ra=9.4472 Å and α=57.350. 

 

Original normalized rhombohedral lattice constants;  

nra=ra/1 Å =4.7236, and α=57.350. 
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Small normalized rhombohedral lattice constants;  

nra=ra/2 Å =2.3618, and α=57.350. 

High normalized rhombohedral lattice constants;  

nra=2ra/1 Å =9.4472, and α=57.350. 

 

Original exchange interactions of the Ni/Bi alloy; 

Jh=Jr2=Jint1=k/nha=0.2206,  

Jr1=Jr3=Jint2=k/nra=0.2117,  

Jlayers (Jl)=k/nhc=0.0847. 

 

Small exchange interactions of the Ni/Bi alloy; 

2Jh=2Jr2=2Jint1=2k/nha=0.4412,  

2Jr1=2Jr3=2Jint2=2k/nra=0.4234,  

2Jlayers (Jl)=2k/nhc=0.1694. 

 

High exchange interactions of the Ni/Bi alloy; 

Jh/2=Jr2/2=Jint1/2=k/2nha=0.1103,  

Jr1/2=Jr3/2=Jint2/2=k/2nra=0.10585,  

Jlayers (Jl)/2=k/2nhc=0.04235. 

 

Within the framework of the EFT [19], the magnetizations of the Ni, Bi1 and Bi2 ( ,m
Ni

m
Bi1,

and 

m
Bi2

) components of the Ni/Bi alloy are given by 
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where, / x    is the differential operator in the EFT and the function of FS-1/2(x) is defined by as 

follows for the spin-1/2 Ising particles. 

 

 F (x) tanh (x+h) (3)
s-1/2

   

 

where,β=1/kBTA, kB denotes the Boltzmann’s constant, TA is the absolute temperature. In this paper 

we used the reduced temperature, namely T=kBTA/J and the reduced applied field, i.e. H=h/J in all 

calculations. The total magnetization of the Ni/Bi alloy (MT) can be written by, 

 T Ni Bi1 Bi2

1
M = 12m 2m 6m (4)

20
    
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3. Results and Discussions 

 

Fig.2 shows the temperature dependence of the magnetization of the Ni/Bi and its components (Ni, 

Bi1 and Bi2) for the small lattice parameter (ha/2, hc/2 and ra/2) and for the high lattice parameter 

(2ha, 2hc and 2ra) than the original lattice parameter (ha, hc and ra) of the Ni/Bi. The critical 

temperature is obtained at Tc=1.14 for the original lattice parameter [18], at Tc=2.31 for the small 

lattice parameter and at Tc=0.59 for the high lattice parameter. Therefore, the Tc of the Ni/Bi and 

its components is inversely proportional with the lattice parameter. So, the Tc of the Ni/Bi and its 

components increases as the lattice parameter decreases or it decreases as the lattice parameters 

increase.  
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Figure. 2. (Color online) Lattice parameter effects on the behavior of thermal magnetizations of the Ni/Bi and its 

components. 

Fig.3 shows the hysteresis loop behaviors of the Ni/Bi and its components (Ni, Bi1 and Bi2) for 

the small lattice parameter (ha/2, hc/2 and ra/2) than the original lattice parameter (ha, hc and ra) 

of the Ni/Bi. The coercive field (Hc) points are obtained as Hc=0.89, 0.56, 0.06 and 0.000 at T=0.5, 

1, 2 and 3, respectively for the small lattice parameter. On the other hand, Hc=0.282, 0.026, 0.000 

and 0.000 at T=0.5, 1, 2 and 3, respectively for the original lattice parameter. As we clearly see 

that the hysteresis loop areas or coercive field points of the Ni/Bi and its components are inversely 

proportional with the lattice parameter. So, they increase as the lattice parameters decrease 

according to the original lattice parameter. 

 

Fig.4 shows the applied field dependence of the magnetization of the Ni/Bi and its components 

(Ni, Bi1 and Bi2) for the high lattice parameter (2ha, 2hc and 2ra) than the original lattice parameter 

(ha, hc and ra) of the Ni/Bi. The hysteresis loop areas or coercive field points are obtained as 

Hc=0.02, 0.00, 0.00 and 0.00 at T=0.5, 1, 2 and 3, respectively for the high lattice parameter. These 

values are small than those of the Hc=0.282, 0.026, 0.000 and 0.000 at T=0.5, 1, 2 and 3, 

respectively for the original lattice parameter. So, they decrease as the lattice parameters increase 

according to the original lattice parameters. 
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Figure 3. (Color online) Hysteresis behaviors of the Ni/Bi and its components for the small lattice parameter. 
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Figure 4. (Color online) Hysteresis behaviors of the Ni/Bi and its components for the high lattice parameter. 
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Fig.5 shows the lattice parameter dependence of the coercive field points of the Ni/Bi and its 

components (Ni, Bi1 and Bi2) for the small lattice parameter (ha/2, hc/2 and ra/2), for the high 

lattice parameter (2ha, 2hc and 2ra) and for the original lattice parameter (ha, hc and ra) of the 

Ni/Bi. The Hc is inversely proportional with the lattice parameters, similar to the Tc. These results 

show us that when the original lattice parameters change, the magnetic properties change inversely 

proportional with the lattice parameters. From these results, we can suggest that it can be possible 

to obtain different magnetic properties of any system by tuning its lattice parameters.  
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Figure 5. (Color online) Lattice parameter effects on the coercive field points of the Ni/Bi and its components 

 

Conclusions 

 

We investigated the temperature and applied field dependence of the magnetizations, namely 

hysteresis loop behaviors, of the Ni/Bi and its components for the small and high lattice parameter 

than the original lattice parameter. This investigation is very important for the technological 

applications, because of the lattice size varies with the temperature of the environment. We find 

that the Tc and Hc or hysteresis loop areas of the Ni/Bi and its components are inversely 

proportional with the lattice parameter. They increase when the lattice parameters decrease or they 

decrease when the lattice parameters increase. Similar behavior has been seen the trilayer Ising 

nanostructure with an ABA stacking sequence [28]. Hence, by tuning the lattice parameter, we can 

control the Tc and Hc of any system. Finally, we should also mention that hysteresis loop area is 

very important for technological applications. If the loop area is wide and big that corresponds hard 

magnet which can be useful for permanent magnets, magnetic recording and memory devices. On 

the other hand, if the loop area is thinner and narrower that corresponds soft magnets in which 

desirable for transformers and motor cores and AC applications.  Moreover, the high coercivities 

correspond to the magnetically hard materials and low coercivities to the magnetically soft ones. 
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